A\ /‘n! :'.v':
\, et
p AN e
y \ ,.-

FINDING T FUN
IN PHYSICS

building.a physics-based game in Unity

INTRODUCTION

» Who we are
» What we’re making
» What this talk is about

NINJ2 THUMBS

@teamninjathumbs

WHO WE ARE

» NINDA THUMBS
= Moritz Schlitter (ART)
= Steve Salmond (CODE)

» CONTRIBUTORS

« Clark Aboud (MUSIC)
clarkaboud.com

robat Datt/e test/ng

grabitygame.com

WHAT WE’RE MAKING

» GRABITY

= A physics-based arena brawler fFor 2-4 players
= Wield grab guns to grab and shoot objects

« 2.50 (30 world, most action on Z=0 plane)

= Emphasis on Fluid movement

GAMEPLARY

» A quick gameplay snippet to illustrate...

WHRAT THIS TALK IS ABOUT

SSSSS

WHRAT THIS TALK IS ABOUT

» Character control with physics!
» Not too technical (hopefully)

ITERATION

» PROBLEM

= Game feel can be tricky
INn a8 physics environment!

» APPROACH
= DEVELOP a new mechanic
= PLAYTEST the heck out of it
= Get FEEDBACK from players
= Rinse and repeat!

MONTAGE!

» A brief look at GRABITY evolving over time...

MONTAGE!

grabbing and shooting

playback rate

MECHANICS

» ITERATIVE APPROACH
= Started with simple controls
= Progressively added and refined mechanics
= Let’s quickly look at each mechanic in turn..

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

MOVEMENT

» Lonvert player input into a force
= Get input vector (dx, dy) from controller

= Apply axis weighting
e.g. (1. 0) on ground, (1. 0.1) in the air

= Ensure input vector length <= 1
= 5Cale by a conversion factor to obtain input force

» Apply force to Rigidbody each physics step

MOVEMENT

dx = Controller.GetAxis("Horizontal") * axisWeight.x;
dy = Controller.GetAxis("Vertical") * axisWeight.y;
input = new Vector3(dx, dy, 0);

if (input.magnitude > 1)
input = input.normalized;

force = input * InputForceScale;
Body.AddForce(force);

MOVEMENT

sluggish direction changes!

MOVEMENT

» PROBLEMS
= Takes ages for player to come to rest
= Sluggish direction changes
= Unlimited top speed

» SOLUTION

= Apply a braking force that opposes lateral velocity
= At Max speed. cancels input force completely
-« Dynamic drag (O when active input, otherwise 1)

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

BRAKING

speed = Vector3.Dot(velocity, right);
brakes = left * (speed / maxSpeed);

force = (input + brakes) * InputForceScale;

Body.AddForce(force);

BRAKING : '

brakes cancel input at max speed

playback rate 257

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

JUMPING

» FIRST ATTEMPT

= Add a big upwards Fforce to jump
= Unpredictable results..

» SECOND ATTEMPT

= Modify velocity directly
= Retain v.Xx, reset v.y
= Scale up v.y based on v.x (‘running’ jJumps)

JUMPING

v = Body.velocity;
(!grounded)
V.y = 0;

lateralSpeed = Abs(Vector3.Dot(right, v));
speed = JumpSpeed.Evaluate(lateralSpeed);
Body.velocity = v + (up * speed);

JUMPING

applying fForce gives unpredictable results /

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

WALL JUMPING

» Use raycasts to detect wall proximity
» LIke regular jumping, but
= Apply lateral as well as upwards velocity
= Jecrease input force on walls to slide down

WALL JUMPING

(isAgainstRightWall && !grounded)
v += left * WallJumpSpeed;
(isAgainstLeftWall && !grounded)
vV += right * WallJumpSpeed;

WALL JUMPING

velocity pushes character up and away from wall
|

JUMP!

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

CROUCHING

» No practical gameplay effect
= But allows players to celebrate!

CROUCHING

no gameplay effect, just feels good!

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

HOVERING

» Apply continuous upward force
= Magnitude falls off as upward speed increases
= Limited hover energy that recharges
= Grounding fully recharges energy

HOVERING

upSpeed = Vector3.Dot(Body.velocity, up);
scale = UpwardSpeedFalloff.Evaluate(upSpeed);
force = up * HoverForceMax * scale;

Body.AddForce(force);

HOVERING

‘pulsing’ the hover button extends Flight time

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» Dashing

» Stomping

» Grabbing, Shooting

DASHING

» Increase velocity, disable brakes to dash
= Very short duration
= Cooldown between successive dashes
= Restrict to cardinal directions
= No up-dash (could stay aloft forever)

DASHING

once again, in slow motion!

DASH! =

playback rate 257,

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

STOMPING

» When landing on ground,
= Check vertical velocity
= |F traveling fast enough, spawn explosive effect!
= |[F |ateral speed Is low, also jump

STOMPING .

impacting ground at high speed creates explosive ‘stomp’

velocity

ARERIAL MANEUVERS

» Combine to maximize hang-time!
= Jump, double jump., wall jump
= Hover
= Dash

ARERIAL MANEUVERS

combining jump, double-jump, wall-jump. ho'yér aﬂg“d@éh N

velocity

W

" DASH! ’

MECHANICS

» Movement

» Braking

» Jumping

» Wall jumping

» Crouching

» Hovering

» [Dashing

» Stomping

» Grabbing, Shooting

GRABBING, SHOOTING

» GRABBING

= Detect nearby objects. check LOS

= PDecide on a current grab candidate

« Apply fForces (using PID control) to attract object
= Jnce shapped to gun, switch to kinematic

» SHOOTING

= Just unsnap and apply a large velocity!
= Add a recoil Force to player

GRABBING, SHOOTING

slow maotion replay!

playback rate 257

PUTTING IT ALL TOGETHER

» Movement

» Braking

» Jumping

» Wall Jumping

» Crouching ‘I»
» Hovering

» [Jashing

» Stomping

» Grabbing, Shooting

HAPPY ACCIDENTS

» Some ‘emergent’ mechanics
= Blocking (using grabbed objects as shields)
« Rocket jumping (firing objects down to boost up)
« Bashing (sprinting + dashing into enemies)
= Stomping and bouncing (latter was a bug!)

THANKS!

Come hang ou

gt Bean Bag End!

»

3 | P '
B , ! ‘ ‘
, ' | A ‘f’\&) :
v 5 ok 1 > /’" V“\
v | @\\ \
- \ 5) }\:
- ~

S \
o 4
]

BN €= 1 ' £
3\ T/ » grabitygame.com

\ ‘ » @teamninjathumbs
» any questions?

